Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis.

SCIENCE ADVANCES(2020)

引用 191|浏览65
暂无评分
摘要
Mimicking the cellular environment, metal-organic frameworks (MOFs) are promising for encapsulating enzymes for general applications in environments often unfavorable for native enzymes. Markedly different from previous researches based on bulk solution synthesis, here, we report the synthesis of enzyme-embedded MOFs in a microfluidic laminar flow. The continuously changed concentrations of MOF precursors in the gradient mixing on-chip resulted in structural defects in products. This defect-generating phenomenon enables multimodal pore size distribution in MOFs and therefore allows improved access of substrates to encapsulated enzymes while maintaining the protection to the enzymes. Thus, the as-produced enzyme-MOF composites showed much higher (similar to one order of magnitude) biological activity than those from conventional bulk solution synthesis. This work suggests that while microfluidic flow synthesis is currently underexplored, it is a promising strategy in producing highly active enzyme-MOF composites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要