谷歌浏览器插件
订阅小程序
在清言上使用

Analysis of Photoreactivity and Phototoxicity of Riboflavin's Analogue 3Metarf.

Journal of photochemistry and photobiology B, Biology(2020)

引用 15|浏览34
暂无评分
摘要
Recent studies focus on usage of blue light of λ = 450 nm in combination with photosensitizers to treat surface skin disorders, including cancers. In search of convenient therapeutic factor we studied riboflavin analogue 3-methyl-tetraacetylriboflavin (3MeTARF) as potential sensitizer. Riboflavin (Rfl) itself, non -toxic in the darkness, upon absorption of UVA and blue light, may act as photosensitizer. However, Rfl efficiency is limited due to its susceptibility to photodecomposition. Riboflavin's acetylated analogue, 3MeTARF, bears substituents in ribose chain, which inhibit intramolecular processes leading to degradation. Upon excitation, this compound, reveals higher photochemical resistance, remaining a good singlet oxygen generator. Thus, being more stable as the sensitizer, might be much more efficient in photodynamic processes. The objective of undertaken study was to elucidate mechanisms of 3MeTARF photoreactivity under the irradiation with blue light in comparison to its mater compound, riboflavin. We approached this goal by using spectroscopic methods, like direct singlet oxygen phosphorescence detection at 1270 nm, EPR spin trapping and oximetry. Additionally, we tested both riboflavin and 3MeTARF phototoxicity against melanoma cells (WM115) and we studied mechanism of photodynamic cell death, as well. Moreover, 3MeTARF induces apoptosis in melanoma cells at ten times lower concentration than riboflavin itself. Our studies confirmed that 3MeTARF remains stable upon blue light activation and is more efficient photosensitizer than Rfl.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要