Light field camera study of near-ground turbulence anisotropy and observation of small outer-scales.

OPTICS LETTERS(2020)

引用 3|浏览2
暂无评分
摘要
Understanding turbulence effects on laser beam propagation is critical to the emerging design, study, and test of many long-range free space optical (FSO) communication and directed energy systems. Conventional studies make the prevalent assumption of isotropic turbulence, while more recent results suggest anisotropic turbulence for atmospheric channels within a few meters elevation above the ground. As countless FSO systems have been and continue to be deployed in such channels, analysis of anisotropic modelings has become one of the fastest growing areas in FSO research. This in turn motivates new tools that can distinguish anisotropic characteristics to improve both modeling accuracy and physical interpretations. Wavefront sensors such as Shack-Hartmann sensors, interferometers, and plenoptic sensors have been devised and used in experiments; however, they all require rigid alignments that lack resilience against temperature gradient buildup and beam wander. We find that by using a light field camera (LFC) that extracts perturbation of individual light rays, the wave structure function of turbulence can be retrieved with high reliability. Furthermore, we find through experiments that the outer scales of near-ground turbulence tend to be a magnitude smaller than conventional theoretical assumptions, agreeing with new findings by others but being absent in current theoretical modelings. As a result, we believe that the LFC is an ideal candidate in the frontier of turbulence research; it is both commercially available and easy to adapt to turbulence experiments. (C) 2020 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要