High-dimensional model recovery from random sketched data by exploring intrinsic sparsity
Machine Learning, pp. 899-938, 2020.
EI
Abstract:
Learning from large-scale and high-dimensional data still remains a computationally challenging problem, though it has received increasing interest recently. To address this issue, randomized reduction methods have been developed by either reducing the dimensionality or reducing the number of training instances to obtain a small sketch of...More
Code:
Data:
Tags
Comments