Load Estimation of Complex Power Networks from Transformer Measurements and Forecasted Loads

COMPLEXITY(2020)

引用 1|浏览9
暂无评分
摘要
This paper presents a load estimation method applicable to complex power networks (namely, heavily meshed secondary networks) based on available network transformer measurements. The method consists of three steps: network reduction, load forecasting, and state estimation. The network is first mathematically reduced to the terminals of loads and measurement points. A load forecasting approach based on temperature is proposed to solve the network unobservability. The relationship between outdoor temperature and power consumption is studied. A power-temperature curve, a nonlinear function, is obtained to forecast loads as the temperature varies. An "effective temperature" reflecting complex weather conditions (sun irradiation, humidity, rain, etc.) is introduced to properly consider the effect on the power consumption of cooling and heating devices. State estimation is adopted to compute loads using network transformer measurements and forecasted loads. Experiments conducted on a real secondary network in New York City with 1040 buses verify the effectiveness of the proposed method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要