Tuning cytokines enriches dendritic cells and regulatory T cells in the periodontium.

Journal of periodontology(2020)

引用 13|浏览36
暂无评分
摘要
BACKGROUND:Periodontal disease results from the pathogenic interactions between the tissue, immune system, and microbiota; however, standard therapy fails to address the cellular mechanism underlying the chronic inflammation. Dendritic cells (DC) are key regulators of T cell fate, and biomaterials that recruit and program DC locally can direct T cell effector responses. We hypothesized that a biomaterial that recruited and programmed DC toward a tolerogenic phenotype could enrich regulatory T cells within periodontal tissue, with the eventual goal of attenuating T cell mediated pathology. METHODS:The interaction of previously identified factors that could induce tolerance, granulocyte-macrophage colony stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP), with the periodontitis network was confirmed in silico. The effect of the cytokines on DC migration was explored in vitro using time-lapse imaging. Finally, regulatory T cell enrichment in the dermis and periodontal tissue in response to alginate hydrogels delivering TSLP and GM-CSF was examinedin vivo in mice using immunohistochemistry and live-animal imaging. RESULTS:The GM-CSF and TSLP interactome connects to the periodontitis network. GM-CSF enhances DC migration in vitro. An intradermal injection of an alginate hydrogel releasing GM-CSF enhanced DC numbers and the addition of TSLP enriched FOXP3+ regulatory T cells locally. Injection of a hydrogel with GM-CSF and TSLP into the periodontal tissue in mice increased DC and FOXP3+ cell numbers in the tissue, FOXP3+ cells in the lymph node, and IL-10 in the tissue. CONCLUSION:Local biomaterial-mediated delivery of GM-CSF and TSLP can enrich DC and FOXP3+ cells and holds promise for treating the pathologic inflammation of periodontal disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要