Exploration of Staphylococcus nepalensis (KY024500) Biosurfactant towards Microbial Enhanced Oil Recovery

JOURNAL OF SURFACTANTS AND DETERGENTS(2020)

引用 4|浏览1
暂无评分
摘要
Oleochemicals have long been used as biolubricants, biopolymers, and biosurfactants; an effective alternative to petroleum-based products. The present study explores the biosurfactant potential of a novel strain, isolated from rocks of earthquake-prone area. On the basis of morphological, biochemical and 16S rRNA sequencing analysis, the isolate was identified as Staphylococcus nepalensis (KY024500). A biosurfactant yield 2.39, 1.39, and 0.9 g L-1 was obtained using glycerol, waste orange peel, and diesel as a sole carbon source, respectively. Based on oil recovery experimental findings through sand pack column, the obtained biosurfactant from waste orange peels as a sole carbon source was carried forward for further analysis. Thus, obtained biosurfactant from waste orange peels were subjected to solvent extraction and purified by column chromatography. The purified biosurfactant thus obtained was characterized with the help of fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), gas chromatography-mass spectroscopy (GC-MS), and MALDI TOF MS/mass spectroscopy (MS) analysis. FTIR spectroscopic analysis revealed the presence of a carbonyl, amine, hydroxyl, and methyl as functional groups. The GC-MS analysis showed the presence of benzene dicarboxylic acid diethyl ester and pthalic acid as fatty acids while MALDI TOF MS/MS analysis shows lysin-glycin as a hydrophilic dipeptide moiety. This study also demonstrates Microbial Enhanced Oil Recovery (MEOR) potential of the biosurfactant as more efficient than commercial ones. The biosurfactant obtained from waste orange peel as carbon source was able to facilitate a 20% higher recovery of diesel from sand pack recovery column.
更多
查看译文
关键词
Biosurfactant,S,nepalensis (KY024500),Lipopeptide,MEOR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要