Suppression Of Dislocation-Induced Spiral Hillocks In Movpe-Grown Algan On Face-To-Face Annealed Sputter-Deposited Aln Template

APPLIED PHYSICS LETTERS(2020)

引用 42|浏览22
暂无评分
摘要
AlGaN films were grown on face-to-face annealed sputter-deposited AlN/sapphire (FFA Sp-AlN) templates via metalorganic vapor phase epitaxy (MOVPE), and the growth behavior of the AlGaN films was investigated. The sapphire substrates with small off-cut exhibited poor surface flatness of AlGaN grown on the FFA Sp-AlN templates owing to the formation of large hillock structures. To understand the origin of these hillock structures, the crystallinity and surface morphology of conventional fully MOVPE-grown AlN/sapphire (MOVPE-AlN) templates and the FFA Sp-AlN template were comprehensively studied. The screw-and mixed-type threading dislocation density of the FFA Sp-AlN template was estimated to be approximately 1.8 x 10(6) cm(-2), which was two orders of magnitude lower than that of the MOVPE-AlN template. Consequently, the uniquely observed growth of the hillock structures in the FFA Sp-AlN templates was attributed to their low density of screw-and mixed-type threading dislocations. The large surface off-cut sapphire substrates suppressed the hillock structures on the FFA Sp-AlN templates. The improvement in surface flatness resulted in better optical properties of multiple quantum wells grown on the AlGaN layer. These results demonstrate a promising method for achieving highly efficient and cost effective AlGaN based deep ultraviolet light-emitting diodes. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要