谷歌浏览器插件
订阅小程序
在清言上使用

Preasymptotic Taylor dispersion: evolution from the initial condition

JOURNAL OF FLUID MECHANICS(2020)

引用 22|浏览9
暂无评分
摘要
Although the process of hydrodynamic dispersion has been studied for many years, the description of solute spreading at early times has proved to be challenging. In particular, for some kinds of initial conditions, the solute evolution may exhibit a second moment that decreases (rather than increases, as is typically observed) in time. Most classical approaches would predict a negative effective hydrodynamic dispersion coefficient for such a situation. This creates some difficulties: not only does a negative dispersion coefficient lead to a violation of the second law of thermodynamics, but it also creates a mathematically ill-posed problem. We outline a set of four desirable qualities in a well-structured theory of unsteady dispersion as follows: (i) positivity of the dispersion coefficient, (ii) non-dependence upon initial conditions, (iii) superposability of solutions and (iv) convergence of solutions to classical asymptotic results. We use averaging to develop an upscaled result that adheres to these qualities. We find that the upscaled equation contains a source term that accounts for the relaxation of the initial configuration. This term decreases exponentially fast in time, leading to correct asymptotic behaviour while also accounting for the early-time solute dynamics. Analytical solutions are presented for both the effective dispersion coefficient and the source term, and we compare our upscaled results with averaged solutions obtained from numerical simulations; both averaged concentrations and spatial moments are compared. Error estimates are quantified, and we find good correspondence between the upscaled theory and the numerical results for all times.
更多
查看译文
关键词
mixing and dispersion,general fluid mechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要