Frizzled 6 disruption suppresses osteoblast differentiation induced by nanotopography through the canonical Wnt signaling pathway.

JOURNAL OF CELLULAR PHYSIOLOGY(2020)

引用 9|浏览9
暂无评分
摘要
This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and beta-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/beta-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/beta-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.
更多
查看译文
关键词
frizzled,nanotopography,osteoblast,titanium,Wnt
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要