Ligand-Modulated Excess PbI 2 Nanosheets for Highly Efficient and Stable Perovskite Solar Cells.

ADVANCED MATERIALS(2020)

引用 134|浏览44
暂无评分
摘要
Excess lead iodide (PbI2), as a defect passivation material in perovskite films, contributes to the longer carrier lifetime and reduced halide vacancies for high-efficiency perovskite solar cells. However, the random distribution of excess PbI2 also leads to accelerated degradation of the perovskite layer. Inspired by nanocrystal synthesis, here, a universal ligand-modulation technology is developed to modulate the shape and distribution of excess PbI2 in perovskite films. By adding certain ligands, perovskite films with vertically distributed PbI2 nanosheets between the grain boundaries are successfully achieved, which reduces the nonradiative recombination and trap density of the perovskite layer. Thus, the power conversion efficiency of the modulated device increases from 20% to 22% compared to the control device. In addition, benefiting from the vertical distribution of excess PbI2 and the hydrophobic nature of the surface ligands, the modulated devices exhibit much longer stability, retaining 72% of their initial efficiency after 360 h constant illumination under maximum power point tracking measurement.
更多
查看译文
关键词
ligand modulation,PbI2,perovskite solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要