A probabilistic approach for calibration time reduction in hybrid EEG–fTCD brain–computer interfaces

BioMedical Engineering OnLine(2020)

引用 8|浏览14
暂无评分
摘要
Background Generally, brain–computer interfaces (BCIs) require calibration before usage to ensure efficient performance. Therefore, each BCI user has to attend a certain number of calibration sessions to be able to use the system. However, such calibration requirements may be difficult to fulfill especially for patients with disabilities. In this paper, we introduce a probabilistic transfer learning approach to reduce the calibration requirements of our EEG–fTCD hybrid BCI designed using motor imagery (MI) and flickering mental rotation (MR)/word generation (WG) paradigms. The proposed approach identifies the top similar datasets from previous BCI users to a small training dataset collected from a current BCI user and uses these datasets to augment the training data of the current BCI user. To achieve such an aim, EEG and fTCD feature vectors of each trial were projected into scalar scores using support vector machines. EEG and fTCD class conditional distributions were learnt separately using the scores of each class. Bhattacharyya distance was used to identify similarities between class conditional distributions obtained using training trials of the current BCI user and those obtained using trials of previous users. Results Experimental results showed that the performance obtained using the proposed transfer learning approach outperforms the performance obtained without transfer learning for both MI and flickering MR/WG paradigms. In particular, it was found that the calibration requirements can be reduced by at least 60.43% for the MI paradigm, while at most a reduction of 17.31% can be achieved for the MR/WG paradigm. Conclusions Data collected using the MI paradigm show better generalization across subjects.
更多
查看译文
关键词
Hybrid brain–computer interfaces, Transfer learning, Common spatial pattern, Template matching, Wavelet decomposition, Probabilistic fusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要