Dislocations as channels for the fabrication of sub-surface porous GaN by electrochemical etching

APL MATERIALS(2020)

引用 20|浏览22
暂无评分
摘要
Porosification of nitride semiconductors provides a new paradigm for advanced engineering of the properties of optoelectronic materials. Electrochemical etching creates porosity in doped layers while leaving undoped layers undamaged, allowing the realization of complex three-dimensional porous nanostructures, potentially offering a wide range of functionalities, such as in-distributed Bragg reflectors. Porous/non-porous multilayers can be formed by etching the whole, as-grown wafers uniformly in one simple process, without any additional processing steps. The etch penetrates from the top down through the undoped layers, leaving them almost untouched. Here, atomic-resolution electron microscopy is used to show that the etchant accesses the doped layers via nanometer-scale channels that form at dislocation cores and transport the etchant and etch products to and from the doped layer, respectively. Results on AlGaN and non-polar GaN multilayers indicate that the same mechanism is operating, suggesting that this approach may be applicable in a range of materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要