Compositions And Formation Mechanisms Of Solid-Electrolyte Interphase On Microporous Carbon/Sulfur Cathodes

CHEMISTRY OF MATERIALS(2020)

引用 23|浏览68
暂无评分
摘要
We report the formation mechanism and compositions of a solid-electrolyte interphase (SEI) on a microporous carbon/sulfur (MC/S) cathode in Li-S batteries using a carbonate-based electrolyte (1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate, v:v = 1:1). Through characterizations using 1D and 2D solution-phase nuclear magnetic resonance spectroscopy, coupled with model chemical reactions and DFT calculations, we have identified two critical roles of Li+ in steering the SEI formation. First, the preferential solvation of Li+ by EC in the mixed carbonate electrolyte renders EC as the dominant participant in the SEI formation, and second, Li+ coordination to the EC carbonyl alters activation barriers and changes the reaction pathways relative to Na+. The main organic components in the SEI are identified as lithium ethylene monocarbonate and lithium methyl carbonate, which are virtually identical to those formed on Li and graphite anodes of lithium-ion batteries but via a different pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要