谷歌浏览器插件
订阅小程序
在清言上使用

Protective Effects and Chemical Composition of Corchorus Olitorius Leaf Fractions Against Isoproterenol-Induced Myocardial Injury Through P65nfkb-Dependent Anti-Apoptotic Pathway in Rats.

Journal of basic and clinical physiology and pharmacology/Journal of basic & clinical physiology & pharmacology(2020)

引用 9|浏览2
暂无评分
摘要
Abstract Background The fractions of Corchorus olitorius leaf (COLF) were evaluated against oxidative stress, inflammation and apoptosis in isoproterenol (ISO)-induced myocardial injury (MI) Wistar rats. Methods The n-hexane, dichloromethane, ethylacetate and ethanol fractions were obtained from COLF extract. Male Wistar strains were randomly grouped into 11 groups (n = 6 in each group), which comprises normal control group, MI control group, 4 fraction groups with two doses (50 and 100 mg/kg) and enalapril (10 mg/kg). The sera were obtained for biochemical studies like AOPP (advance oxidized protein product), CRP (C-reactive protein), LDH (lactate dehydrogenase), CKMB (creatine kinase-MB) and myocardial tissue obtained for GSH, p65NFkB, bax, bcl2, p53 and p65NFkB assays. Results The subcutaneous administration of ISO increased the serum level of CRP, LDH and CKMB significantly (p < 0.05) and decreased serum AOPP, tissue GSH and p65NFkB (p < 0.05) in the infarction control rats. Pretreatment with COLF and enalapril increased the tissue GSH and p65NFkB levels (p < 0.05) and significantly reduced serum CRP, AOPP, LDH and CKMB. The dichloromethane fraction (CODCM) being the most active was chosen to evaluate the anti-apoptotic effect. CODCM (50 and 100 mg/kg) and enalapril showed a significant (p < 0.05) effect through severe expression of p65NFkB, which correlates with increased bcl2 protein expression, decreased bax protein and p53 expression. Gas chromatography mass spectrometry revealed the presence of 26 compounds in CODCM. Conclusions From the present study, COLF protected the myocardial tissue against ischemic injury in rats probably via the p65NFkB-dependent anti-apoptotic pathway and attenuation of pro-inflammatory marker level.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要