Effect Of Indium Alloying On The Charge Carrier Dynamics Of Thick-Shell Inp/Znse Quantum Dots

JOURNAL OF CHEMICAL PHYSICS(2020)

引用 15|浏览10
暂无评分
摘要
Thick-shell InP/ZnSe III-V/II-VI quantum dots (QDs) were synthesized with two distinct interfaces between the InP core and ZnSe shell: alloy and core/shell. Despite sharing similar optical properties in the spectral domain, these two QD systems have differing amounts of indium incorporation in the shell as determined by high-resolution energy-dispersive x-ray spectroscopy scanning transmission electron microscopy. Ultrafast fluorescence upconversion spectroscopy was used to probe the charge carrier dynamics of these two systems and shows substantial charge carrier trapping in both systems that prevents radiative recombination and reduces the photoluminescence quantum yield. The alloy and core/shell QDs show slight differences in the extent of charge carrier localization with more extensive trapping observed in the alloy nanocrystals. Despite the ability to grow a thick shell, structural defects caused by III-V/II-VI charge carrier imbalances still need to be mitigated to further improve InP QDs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要