Large Nonreciprocal Absorption And Emission Of Radiation In Type-I Weyl Semimetals With Time Reversal Symmetry Breaking

PHYSICAL REVIEW B(2020)

引用 65|浏览20
暂无评分
摘要
The equality between the spectral directional emittance and absorptance of an object under local thermodynamic equilibrium is known as Kirchhoff's law of radiation. The breakdown of Kirchhoff's law of radiation is physically allowed by breaking time reversal symmetry and can open opportunities for nonreciprocal light emitters and absorbers. Large anomalous Hall conductivity and angle recently observed in topological Weyl semimetals, particularly type-I magnetic Weyl semimetals and type-II Weyl semimetals, are expected to create large nonreciprocal electromagnetic wave propagation. In this work, we focus on type-I magnetic Weyl semimetals and show via modeling and simulation that nonreciprocal surface plasmon polaritons can result in pronounced nonreciprocity without an external magnetic field. The modeling in this work begins with a single pair of Weyl nodes, followed by a more realistic model with multiple paired Weyl nodes. Fermi-arc surface states are also taken into account through the surface conductivity. This work points to the promising applicability of topological Weyl semimetals for magneto-optical and energy applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要