Pinna-related transfer functions and lossless wave equation using finite-difference methods: Validation with measurements.

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA(2020)

引用 4|浏览17
暂无评分
摘要
Nowadays, wave-based simulations of head-related transfer functions (HRTFs) lack strong justifications to replace HRTF measurements. The main cause is the complex interactions between uncertainties and biases in both simulated and measured HRTFs. This paper deals with the validation of pinna-related high-frequency information in the ipsilateral directions-of-arrival, computed by lossless wave-based simulations with finite-difference models. A simpler yet related problem is given by the pinna-related transfer function (PRTF), which encodes the acoustical effects of only the external ear. Results stress that PRTF measurements are generally highly repeatable but not necessarily easily reproducible, leading to critical issues in terms of reliability for any ground truth condition. On the other hand, PRTF simulations exhibit an increasing uncertainty with frequency and grid-dependent frequency changes, which are here quantified analyzing the benefits in the use of a unique asymptotic solution. In this validation study, the employed finite-difference model accurately and reliably predict the PRTF magnitude mostly within +/- 1 dB up to approximate to 8 kHz and a space- and frequency-averaged spectral distortion within about 2 dB up to approximate to 18 kHz. (C) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要