Robust Video Object Tracking via Camera Self-Calibration

user-5d54d98b530c705f51c2fe5a(2019)

引用 0|浏览130
暂无评分
摘要
In this dissertation, a framework for 3D scene reconstruction based on robust video object tracking assisted by camera self-calibration is proposed, which includes several algorithmic components. (1) An algorithm for joint camera self-calibration and automatic radial distortion correction based on tracking of walking persons is designed to convert multiple object tracking into 3D space. (2) An adaptive model that learns online a relatively long-term appearance change of each target is proposed for robust 3D tracking. (3) We also develop an iterative two-step evolutionary optimization scheme to estimate 3D pose of each human target, which can jointly compute the camera trajectory for a moving camera as well. (4) With 3D tracking results and human pose information from multiple views, we propose multi-view 3D scene reconstruction based on data association with visual and semantic attributes. Camera calibration and radial distortion correction are crucial prerequisites for 3D scene understanding. Many existing works rely on the Manhattan world assumption to estimate camera parameters automatically, however, they may perform poorly when lack of man-made structure in the scene. As walking humans are common objects in video analytics, they have also been used for camera calibration, but the main challenges include noise reduction for the estimation of vanishing points, the relaxation of assumptions on unknown camera parameters, and radial distortion correction. We propose a novel framework for camera self-calibration and automatic radial distortion correction. Our approach starts with a multi-kernel-based adaptive segmentation and …
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要