Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory

NIPS 2020(2020)

引用 15|浏览415
暂无评分
摘要
Temporal-difference and Q-learning play a key role in deep reinforcement learning, where they are empowered by expressive nonlinear function approximators such as neural networks. At the core of their empirical successes is the learned feature representation, which embeds rich observations, e.g., images and texts, into the latent space that encodes semantic structures. Meanwhile, the evolution of such a feature representation is crucial to the convergence of temporal-difference and Q-learning. In particular, temporal-difference learning converges when the function approximator is linear in a feature representation, which is fixed throughout learning, and possibly diverges otherwise. We aim to answer the following questions: When the function approximator is a neural network, how does the associated feature representation evolve? If it converges, does it converge to the optimal one? We prove that, utilizing an overparameterized two-layer neural network, temporal-difference and Q-learning globally minimize the mean-squared projected Bellman error at a sublinear rate. Moreover, the associated feature representation converges to the optimal one, generalizing the previous analysis of Cai et al. (2019) in the neural tangent kernel regime, where the associated feature representation stabilizes at the initial one. The key to our analysis is a mean-field perspective, which connects the evolution of a finite-dimensional parameter to its limiting counterpart over an infinite-dimensional Wasserstein space. Our analysis generalizes to soft Q-learning, which is further connected to policy gradient.
更多
查看译文
关键词
representation,temporal-difference,q-learning,mean-field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要