Redox mechanisms of conversion of Cr(VI) to Cr(III) by graphene oxide-polymer composite.

Scientific reports(2020)

引用 73|浏览0
暂无评分
摘要
Alternative methods of aqueous chromium removal have been of great research interest in recent years as Cr (VI) is a highly toxic compound causing severe human health effects. To achieve better removal of Cr (VI), it is essential to understand the chemical reactions that lead to the successful removal of Cr species from the solution. Recent studies have demonstrated that graphene oxide (GO) based polymer beads cannot only adsorb Cr (VI) via electrostatic attractions but also reduce it to Cr (III), which is a much less toxic form of chromium. This conversion and the functional groups involved in this conversion, until now, were not elucidated. In the present study, we employed X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy to investigate the conversion pathway of Cr (VI) to Cr (III) in graphene-based polymer beads. The results showed that alcoholic groups are converted to carboxylic groups while reducing Cr (VI) to Cr (III). The inclusion of GO in the polymer beads dramatically increased the potential of Cr (VI) uptake and conversion to Cr (III), indicating polymers and nanomaterials containing alcohol groups can remove and convert chromium in water. Other functional groups present in the polymer bead play an important role in adsorption but are not involved in the conversion of Cr (VI) to Cr (III).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要