Low-Rank Regularization And Solution Uniqueness In Over-Parameterized Matrix Sensing

INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108(2020)

引用 13|浏览6
暂无评分
摘要
We consider the question whether algorithmic choices in over-parameterized linear matrix factorization introduce implicit low-rank regularization. We focus on the noiseless matrix sensing scenario over low-rank positive semi-definite (PSD) matrices over the reals, with a sensing mechanism that satisfies restricted isometry properties. Surprisingly, it was recently argued that for recovery of PSD matrices, gradient descent over a squared, full-rank factorized space introduces implicit low-rank regularization. Thus, a clever choice of the recovery algorithm avoids the need for explicit low-rank regularization. In this contribution, we prove that in fact, under certain conditions, the PSD constraint by itself is sufficient to lead to a unique low-rank matrix recovery, without explicit or implicit regularization. Therefore, under these conditions, the set of PSD matrices that are consistent with the observed data, is a singleton, regardless of the algorithm used. Our numerical study indicates that this result is general and extends to cases beyond the those covered by the proof.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要