Solution Processed Hybrid Polymer: HgTe Quantum Dot Phototransistor with High Sensitivity and Fast Infrared Response up to 2400 nm at Room Temperature.

ADVANCED SCIENCE(2020)

引用 50|浏览46
暂无评分
摘要
Narrow bandgap semiconductor-based photodetectors often suffer from high room-temperature noise and are therefore operated at low temperatures. Here, a hybrid poly(3-hexylthiophene) (P3HT): HgTe quantum dot (QD) phototransistor is reported, which exhibits high sensitivity and fast photodetection up to 2400 nm wavelength range at room temperature. The active layer of the phototransistor consists of HgTe QDs well dispersed in a P3HT matrix. Fourier-transform infrared spectra confirm that chemical grafting between P3HT and HgTe QDs is realized after undergoing prolonged coblend stirring and a ligand exchange process. Thanks to the shifting of the charge transport into the P3HT and the partial passivation of the surface traps of HgTe QDs in the blend, the P3HT: HgTe QD hybrid phototransistor shows significantly improved gate-voltage tuning, 15 times faster response, and approximate to 80% reduction in the noise level compared to a pristine HgTe QD control device. More than 10(11) Jones specific detectivity (estimated from the noise spectral density measured at 1 kHz) is achieved at room temperature, and the response time (measured at 22 mW cm(-2) illumination intensity) of the device is less than 1.5 mu s. That is comparable to commercial epitaxially grown IR photodetectors operated in the same wavelength range.
更多
查看译文
关键词
HgTe quantum dots,infrared photodetection,IR photodetection,phototransistors,poly(3-hexylthiophene)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要