Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures

Advanced Materials(2020)

引用 30|浏览43
暂无评分
摘要
The ability to switch magnetic elements by spin-orbit-induced torques has recently attracted much attention for a path toward high-performance, nonvolatile memories with low power consumption. Realizing efficient spin-orbit-based switching requires the harnessing of both new materials and novel physics to obtain high charge-to-spin conversion efficiencies, thus making the choice of spin source crucial. Here, the observation of spin-orbit torque switching in bilayers consisting of a semimetallic film of 1T\u0027-MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best-performing heavy metals. The thickness-dependence can be understood if the interfacial spin-orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell-shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low-power semimetal-material-based spin devices.
更多
查看译文
关键词
magnetization switching, semimetal MoTe2, spin-orbit torque, spintronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要