A continuous family of Exact Dispersive Quasi-Normal Modal (DQNM) Expansions for dispersive photonic structures

OPTICS EXPRESS(2020)

引用 9|浏览13
暂无评分
摘要
In photonics, Dispersive Quasi-Normal Modes (DQNMs) refer to optical resonant modes, solutions of spectral problems associated with Maxwell's equations for open photonic structures involving dispersive media. Since these DQNMs are the constituents determining optical responses, studying DQNM expansion formalisms is the key to model the physical properties of a considered system. In this paper, we emphasize the non-uniqueness of the expansions related to the over-completeness of the set of modes and discuss a family of DQNM expansions depending on continuous parameters that can be freely chosen. These expansions can be applied to dispersive, anisotropic, and even non-reciprocal materials. As an example, we particularly demonstrate the modal analysis on a 2-D scattering model where the permittivity of a silicon object is drawn directly from actual measurement data. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要