Attacking Lifelong Learning Models with Gradient Reversion

user-5eddf84c4c775e09d87c9229(2019)

引用 0|浏览55
暂无评分
摘要
Lifelong learning aims at avoiding the catastrophic forgetting problem of traditional supervised learning models. Episodic memory based lifelong learning methods such as A-GEM (Chaudhry et al., 2018b) are shown to achieve the state-of-the-art results across the benchmarks. In A-GEM, a small episodic memory is utilized to store a random subset of the examples from previous tasks. While the model is trained on a new task, a reference gradient is computed on the episodic memory to guide the direction of the current update. While A-GEM has strong continual learning ability, it is not clear that if it can retain the performance in the presence of adversarial attacks. In this paper, we examine the robustness ofA-GEM against adversarial attacks to the examples in the episodic memory. We evaluate the effectiveness of traditional attack methods such as FGSM and PGD. The results show that A-GEM still possesses strong continual learning ability in the presence of adversarial examples in the memory and simple defense techniques such as label smoothing can further alleviate the adversarial effects. We presume that traditional attack methods are specially designed for standard supervised learning models rather than lifelong learning models. we therefore propose a principled way for attacking A-GEM called gradient reversion (GREV) which is shown to be more effective. Our results indicate that future lifelong learning research should bear adversarial attacks in mind to develop more robust lifelong learning algorithms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要