Combo-Attention Network for Baidu Video Advertising

KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Virtual Event CA USA July, 2020(2020)

引用 34|浏览1454
暂无评分
摘要
With the progress of communication technology and the popularity of the smart phone, videos grow to be the largest medium. Since videos can grab a customer's attention quickly and leave a big impression, video ads can gain more trust than traditional ads. Thus advertisers start to pour more resources into making creative video ads to built the connections with potential customers. Baidu, as the leading search engine company in China, receives billions of search queries per day. In this paper, we introduce a technique used in Baidu video advertising for feeding relevant video ads according to the user's query. Note that, retrieving relevant videos using the text query is a cross-modal problem. Due to the modal gap, the text-to-video search is more challenging than well exploited text-to-text search and image-to-image search. To tackle this challenge, we propose a Combo-Attention Network (CAN) and launch it in Baidu video advertising. In the proposed CAN model, we represent a video as a set of bounding boxes features and represent a sentence as a set of words features, and formulate the sentence-to-video search as a set-to-set matching problem. The proposed CAN is built upon the proposed combo-attention module, which exploits cross-modal attentions besides self attentions to effectively capture the relevance between words and bounding boxes. To testify the effectiveness of the proposed CAN offline, we built a Daily700K dataset collected from HaoKan APP. The systematic experiments on Daily700K as well as a public dataset, VATEX, demonstrate the effectiveness of our CAN. After launching the proposed CAN in Baidu's dynamic video advertising (DVA), we achieve a $5.47%$ increase in Conversion Rate (CVR) and a $11.69%$ increase in advertisement impression rate.
更多
查看译文
关键词
search, ranking, cross-modal, short video, neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要