Two-Photon Phase-Sensing With Single-Photon Detection

APPLIED PHYSICS LETTERS(2020)

引用 8|浏览35
暂无评分
摘要
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit, provided that an efficient parity measurement can be implemented. Realizing this experimentally is technologically demanding, as it requires coincident single-photon detection proportional to the number of photons involved, which represents a severe challenge for achieving a practical quantum advantage over classical methods. Here, we exploit advanced quantum state engineering based on superposing two photon-pair creation events to realize a new approach that bypasses this issue. In particular, optical phase shifts are probed with a two-photon quantum state whose information is subsequently effectively transferred to a single-photon state. Notably, without any multiphoton detection, we infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode, in analogy to standard classical measurements. Importantly, our approach maintains the quantum advantage: twice as many interference fringes are observed for the same phase shift, corresponding to N=2 path-entangled photons. Our results demonstrate that the advantages of quantum-enhanced phase sensing can be fully exploited in standard intensity measurements, paving the way toward resource-efficient and practical quantum optical metrology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要