Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics

NIPS 2020(2020)

引用 26|浏览128
暂无评分
摘要
We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error. Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence. This potentially makes it difficult to directly deal with finite width network; especially in the neural tangent kernel regime, we cannot reveal favorable properties of neural networks beyond kernel methods. To realize more natural analysis, we consider a completely different approach in which we formulate the parameter training as a transportation map estimation and show its global convergence via the theory of the {\it infinite dimensional Langevin dynamics}. This enables us to analyze narrow and wide networks in a unifying manner. Moreover, we give generalization gap and excess risk bounds for the solution obtained by the dynamics. The excess risk bound achieves the so-called fast learning rate. In particular, we show an exponential convergence for a classification problem and a minimax optimal rate for a regression problem.
更多
查看译文
关键词
transportation map estimation,neural network,dynamics,non-convex
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要