谷歌浏览器插件
订阅小程序
在清言上使用

Trichoderma Virens Colonization of Maize Roots Triggers Rapid Accumulation of 12-Oxophytodienoate and Two ᵧ-Ketols in Leaves As Priming Agents of Induced Systemic Resistance

Plant signaling & behavior/Plant signalling & behavior(2020)

引用 16|浏览11
暂无评分
摘要
Two oxylipins 12-OPDA (12-Oxo-10(Z),15(Z)-phytodienoic add) and an alpha-ketol,9,10-KODA (10-oxo-9-hydroxy-12(Z), 15(Z)-octadecadienoic acid) were recently identified as important long-distance-induced systemic resistance (ISR) signals in Trichoderma virens-treated maize. On the other hand, jasmonic acid (JA), long believed to be a major signal of ISR, was not involved, as the JA-deficient mutant, opr7 opr8, retained the capacity for T. virens-triggered ISR. In order to further understand the biochemical basis for ISR priming in maize leaves, diverse oxylipins and phytohormones in the leaves of wild-type maize or ISR-deficient lox10-3 mutants treated with T. virens were quantified. This analysis revealed that 12-OPDA and two novel alpha-ketols, 9,12-KODA (12-Oxo-9-hydroxy-10(E)-octadecenoic acid) and 9,12-KOMA (12-Oxo-9-hydroxy-10(E),15(2)-octadecadienoic acid), accumulated at high levels in ISR-positive plants. In support of the notion that 12-OPDA serves as a priming agent for ISR in addition to being a xylem-mobile signal, leaf pretreatment with this JA precursor resulted in increased resistance to Colletotrichum graminicola. Furthermore, the injection of 9,12-KODA or 9,12-KOMA in wild-type plants enhanced resistance against C. graminicola infection, suggesting that they play roles in ISR priming.
更多
查看译文
关键词
Oxylipins,lipoxygenase,symbiont,defense priming,Colletotrichum graminicola
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要