Progress of indirect drive inertial confinement fusion in the us

S. H. B ATHA, L. R. B ENEDETTI, D. B ENNETT, S. B HANDARKAR, L. F. B ERZAK H OPKINS, J. B IENER, M. M. B IENER, E. B OND, D. B RADLEY, P. A. B RADELY, T. B RAUN, D. A. C ALLAHAN, J. C AGGIANO, T. C ARDENAS, C. C ERJAN, B. C AGADAS, D. C LARK, C. C ASTRO, W. S. D AUGHTON, E. L. D EWALD, T. D ÖPPNER, L. D IVOL, M. E CKART, D. E DGELL,M. F ARRELL, J. F IELD, F. F IERRO, D. N. F ITTINGHOFF, M. G ATU J OHNSON, S. J OHNSON, G. G RIM, N. G ULER, S. H AAN, B. M. H AINES, C. E. H AMILTON, A. V. H AMZA, E P. H ARTOUNI, B. H AINES, R. H ATARIK, K. H ENDERSON, H. W. H ERRMANN, D. H INKEL, M. H OHENBERGER, D. H OOVER, H. H UANG, M. L. H OPPE, O. A. H URRICANE, N. I ZUMI, S. K HAN, B. J. K OZIOZIEMSKI, C. K ONG, G. A. K YRALA, R. J. L EEPER, S. L E P APE, E. L OOMIS, A. J. M ACKINNON, A. G. M AC P HEE, L. M ASSE, J. M C N ANEY, N. B. M EEZAN, J. F. M ERRILL, E. C. M ERRITT, J. L. M ILOVICH, D. S. M ONTGOMERY, J. M OODY, A. N IKROO, J. O ERTEL, R. E. O LSON, S. P ALANIYAPPAN, P. P ATEL, B. M. P ATTERSON, T. S. P ERRY, R. R. P ETERSON, E. P ICENO, J. E. R ALPH, R. B. R ANDOLPH, J. R. R YGG, M. R. S ACKS, J. S AUPPE, J. S ALMONSON, D. S AYRE, J. D. S ATER, M. S CHNEIDER, M. S CHOFF, D. W. S CHMIDT, S EPKE, R. S EUGLING, R. C. S HAH, M S TADERMANN, W. S TOEFFL, D. J. S TROZZI, R. T IPTON, C. T HOMAS, RPJ T OWN, P. L. V OLEGOV, C. W ILDE, C. W ILSON, E W OERNER, C. Y EAMANS, B. Y OXALL, A. B. Z YLSTRA, J. K ILKENNY, O. L. L ANDEN, W. H SING, M. J. E DWARDS

semanticscholar(2018)

引用 0|浏览0
暂无评分
摘要
Indirect drive converts high power laser into x rays using small high-Z cavities called hohlraums. X rays generated at the hohlraum walls drive a capsule filled with DT fusion fuel. Recent experiments have produced fusion yields exceeding 50 kJ where alpha heating provides ~3x increase in yield over PdV work. Improvements needed to approach ignition are challenging requiring optimization of the target/implosions and the laser to extract maximum energy. The US program has a three-pronged approach to maximize target performance each closing some portion of the gap. The first item is optimizing the hohlraum to couple more energy to the capsule while maintaining symmetry control. Novel hohlraum designs are being pursued that enable larger capsule to be driven symmetrically to both reduce 3D effects and increase energy coupled to the capsule. The second issue being addressed is capsule stability. Seeding of instabilities by the hardware used to mount the capsule and fill it with DT fuel remains a concern. Work such reducing the impact of the DT fill tubes and novel capsule mounts such as three sets of two single wire stands forming a cage, as opposed to the thin membranes currently used, are being pursed to reduce the effect of mix on the capsule implosions. There is also growing evidence native capsule seeds such as micro-structure may be playing a role on limiting capsule performance and dedicated experiments are being developed to better understand the phenomenon. The last area of emphasis is the laser. As technology progresses and understanding of laser damage/mitigation advances, increasing the laser energy seems possible. This would increase the amount of energy available to couple to the capsule and allow larger capsules potentially increasing the hot spot pressure and confinement time. The combination of each of these focus areas have the potential to produce conditions to initiate thermo-nuclear ignition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要