Idarubicin-Loaded ONCOZENE Drug-Eluting Bead Chemoembolization in a Rabbit Liver Tumor Model: Investigating Safety, Therapeutic Efficacy, and Effects on Tumor Microenvironment.

Journal of vascular and interventional radiology : JVIR(2020)

引用 7|浏览50
暂无评分
摘要
PURPOSE:To investigate toxicity, efficacy, and microenvironmental effects of idarubicin-loaded 40-μm and 100-μm drug-eluting embolic (DEE) transarterial chemoembolization in a rabbit liver tumor model. MATERIALS AND METHODS:Twelve male New Zealand White rabbits with orthotopically implanted VX2 liver tumors were assigned to DEE chemoembolization with 40-μm (n = 5) or 100-μm (n = 4) ONCOZENE microspheres or no treatment (control; n = 3). At 24-72 hours postprocedurally, multiparametric magnetic resonance (MR) imaging including dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and biosensor imaging of redundant deviation in shifts (BIRDS) was performed to assess extracellular pH (pHe), followed by immediate euthanasia. Laboratory parameters and histopathologic ex vivo analysis included fluorescence confocal microscopy and immunohistochemistry. RESULTS:DCE MR imaging demonstrated a similar degree of devascularization of embolized tumors for both microsphere sizes (mean arterial enhancement, 8% ± 12 vs 36% ± 51 in controls; P = .07). Similarly, DWI showed postprocedural increases in diffusion across the entire lesion (apparent diffusion coefficient, 1.89 × 10-3 mm2/s ± 0.18 vs 2.34 × 10-3 mm2/s ± 0.18 in liver; P = .002). BIRDS demonstrated profound tumor acidosis at baseline (mean pHe, 6.79 ± 0.08 in tumor vs 7.13 ± 0.08 in liver; P = .02) and after chemoembolization (6.8 ± 0.06 in tumor vs 7.1 ± 0.04 in liver; P = .007). Laboratory and ex vivo analyses showed central tumor core penetration and greater increase in liver enzymes for 40-μm vs 100-μm microspheres. Inhibition of cell proliferation, intratumoral hypoxia, and limited idarubicin elution were equally observed with both sphere sizes. CONCLUSIONS:Noninvasive multiparametric MR imaging visualized chemoembolic effects in tumor and tumor microenvironment following DEE chemoembolization. Devascularization, increased hypoxia, coagulative necrosis, tumor acidosis, and limited idarubicin elution suggest ischemia as the predominant therapeutic mechanism. Substantial size-dependent differences indicate greater toxicity with the smaller microsphere diameter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要