谷歌浏览器插件
订阅小程序
在清言上使用

A Neurovascular High-Frequency Optical Coherence Tomography System Enables In Situ Cerebrovascular Volumetric Microscopy

NATURE COMMUNICATIONS(2020)

引用 30|浏览46
暂无评分
摘要
Intravascular imaging has emerged as a valuable tool for the treatment of coronary and peripheral artery disease; however, no solution is available for safe and reliable use in the tortuous vascular anatomy of the brain. Endovascular treatment of stroke is delivered under image guidance with insufficient resolution to adequately assess underlying arterial pathology and therapeutic devices. High-resolution imaging, enabling surgeons to visualize cerebral arteries' microstructure and micron-level features of neurovascular devices, would have a profound impact in the research, diagnosis, and treatment of cerebrovascular diseases. Here, we present a neurovascular high-frequency optical coherence tomography (HF-OCT) system, including an imaging console and an endoscopic probe designed to rapidly acquire volumetric microscopy data at a resolution approaching 10 microns in tortuous cerebrovascular anatomies. Using a combination of in vitro, ex vivo, and in vivo models, the feasibility of HF-OCT for cerebrovascular imaging was demonstrated. High resolution intravascular imaging in the brain is limited by the high tortuosity of the vasculature. Here the authors present a fiber optic imaging technology using high-frequency optical coherence tomography (HF-OCT) to provide volumetric high resolution images in the highly tortuous cerebral vasculature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要