谷歌浏览器插件
订阅小程序
在清言上使用

High-Throughput Screening of Quaternary Compounds and New Insights for Excellent Thermoelectric Performance

arXiv (Cornell University)(2020)

引用 5|浏览1
暂无评分
摘要
It is well known that a high electrical conductivity, large Seebeck coefficient, and low thermal conductivity are preferred for enhancing thermoelectric performance, but unfortunately, these properties are strongly intercorrelated with no rational scenario for their efficient decoupling. This big dilemma for thermoelectric research appeals for alternative strategic solutions, while a high-throughput screening is one of them. In this work, we start from a total of 3136 real electronic structures of the huge X2YZM4 quaternary compound family and perform the high-throughput searching in terms of enhanced thermoelectric properties. The comprehensive data mining allows an evaluation of the electronic and phonon characteristics of those promising thermoelectric materials. More importantly, a new insight that the enhanced thermoelectric performance benefits substantially from the coexisting quasi-Dirac and heavy fermions plus strong optical-acoustic phonon hybridization is proposed. This work provides a clear guidance to theoretical screening and experimental realization and thus toward the development of thermoelectric materials with excellent performance.
更多
查看译文
关键词
High-Throughput,Thermoelectric
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要