Sub-surface Damage of Ultra-Thin Monocrystalline Silicon Wafer Induced by Dry Polishing

Electronic Materials Letters(2020)

引用 10|浏览31
暂无评分
摘要
Ultra-thin wafer fabrication has become a hot spot in recent years with the growing demand for small size and high performance electronic devices. However, far less research focused on the damage behavior in ultra-thin wafer. In this work, 300 mm diameter silicon wafer was thinned to 6 µm thick by grinding plus ultra-precision dry polishing. The damage behavior before and after the dry polishing was discussed. Mechanical and surface analysis showed that the dry polishing process can help improve the strength and surface uniformity of ultra-thin wafer by removing high pressure phase and micro cracks. Series of nano beam diffraction patterns revealed the stress induced by the thinning process only existed in surface. High resolution transmission electron microscopy images analyzed by geometric phase approach indicated that surface dislocations can move across the wafer and reached bottom device layers during the dry polishing, increasing the risk of electrical deterioration. The findings are of great significance to the study on process optimization of ultra-thin wafer and provide insights into the reliability of advanced electronic packaging. Graphic abstract
更多
查看译文
关键词
Ultra-thin wafer, Dislocation, Sub-surface damage, Polishing, Silicon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要