Stress loading and the occurrence of normal-type earthquakes under Boso Peninsula, Japan

Earth, Planets and Space(2020)

引用 1|浏览8
暂无评分
摘要
Boso Peninsula, Japan, was formed by the interaction of the Philippine Sea, Eurasian and Pacific plates around the trench–trench–trench Boso triple junction. Normal-type earthquakes are persistently observed in the subducting Philippine Sea slab under the peninsula at a depth of ~ 30 km, including a recent (2019) M w 4.9 earthquake which caused shaking throughout the Kanto region (greater Tokyo). Such shallow intraplate earthquakes are potentially hazardous to this heavily populated region, yet their mechanism is poorly understood, especially in the context of a three-plate system. Here, we calculate stress rates in the Philippine Sea slab and the surrounding area, using a subduction model constructed in a previous study, to explain the generation of the regional stress field and its effect on earthquake occurrence. In general, the calculated stress rates under Boso Peninsula are horizontally extensional both above and below the Eurasian–Philippine Sea plate interface. We apply our calculated stress rates to the nodal planes of the observed earthquakes to calculate the Coulomb failure function (ΔCFF). These calculated ΔCFFs are generally positive on normal-type earthquakes under Boso. The ΔCFFs are also consistent with earthquakes in adjacent areas that are seismically active, for example, in the Philippine Sea plate to the south, in the collision zone around Izu Peninsula, and in the cluster in the Eurasian plate northeast of Boso Peninsula, which further supports our stress loading model. Calculation of the individual contributions of Philippine Sea plate and Pacific plate subduction shows that the development of the stress field around Boso is dependent upon contributions from both subducting plates. In contrast, the arc–arc collision at Izu Peninsula has little influence.
更多
查看译文
关键词
Stress loading, Philippine Sea plate, Boso Peninsula, Intra-slab earthquake, Plate subduction, Elastic dislocation theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要