Bio-inspired surface modification of PEEK through the dual cross-linked hydrogel layers.

Journal of the mechanical behavior of biomedical materials(2020)

引用 13|浏览7
暂无评分
摘要
The biocompatible high-performance material PEEK (polyetheretherketone) is an attractive implant material, however, its hydrophobicity and high friction coefficients severely hinder its biomedical applications. Thus, it is inferred from the recent advances in surface modification technology, achieving the biomimetic natural joint lubrication systems on PEEK still remains a challenge. In view of the above, herein we proposed a novel two-step strategy to fabricate a "soft (dual cross-linked hydrogel) layer-hard (PEEK) substrate" texture that mimics the structure and function of soft cartilage on the hard basal bone in joints. At first, a layer of acrylic acid-co-acryl amide (AA-AM) hydrogel is anchored to the PEEK substrate through UV-initiated polymerization. In the second step, hydrogel coated PEEK substrate is immersed in ferric nitrate solution to create the secondary cross-linkage between Fe3+ and -COOH groups in the hydrogel. As a result, the consequential top-coat hydrogel layer not only transforms the surface wettability (hydrophobic to hydrophilic) but also provides scratch resistance to the underlying PEEK substrate. The modified specimens display low friction coefficients in water under different load conditions. In addition, the obtained surface exhibits a certain self-repairing ability due to its unique physically reversible network structure. Therefore, this work provides a promising strategy for broadening the use of PEEK in orthopedic implants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要