谷歌浏览器插件
订阅小程序
在清言上使用

Multi-phase distribution, spatiotemporal variation and risk assessment of antibiotics in a typical urban-rural watershed.

Ecotoxicology and environmental safety(2020)

引用 23|浏览18
暂无评分
摘要
The widespread consumption and continuous discharge of antibiotics have threatened the ecological health of urban-rural watershed. In this study, multi-phase distribution, spatiotemporal variation and ecological risk of 18 antibiotics in rivers and lakes from Suzhou City were investigated based on urban-rural gradient. The total antibiotic concentration in surface water, suspended particulate matter (SPM) and sediments was 39.28-2578 ng/L, 6.16-171.09 ng/L and 12.67-2249 ng/g, respectively. High detection frequency (>76%) and concentration of antibiotics in multi-phase suggested universal pollution. Quinolones (QNs) and tetracycline (TCs) were the dominant antibiotics detected. The partitioning coefficient (KP) value of SPM-water was 1.43-29.93 times larger than sediment-water, indicating that SPM can greatly affect the fate and distribution of antibiotics. Significant positive correlations between antibiotics and environmental parameters (e.g. TOC, TP and TN) revealed combined contamination and similar pollution sources. Antibiotic pollution exhibited evident spatiotemporal variation. For spatial variation, urban area showed more serious antibiotic pollution and greater ecological risk than rural and suburb areas, especially for sediments. Besides, antibiotic level and risk in rivers were higher than lakes. For seasonal variation, in case of surface water, rural area exhibited higher content in winter, while greater content was detected in autumn and spring in urban and suburb areas, respectively. The highest antibiotic content in SPM and sediments was all measured in winter owing to weak degradation ability. Ecological risk assessment based on risk quotients (RQs) indicated that norfloxacin (NFX), ciprofloxacin (CFX) and anhydroerythromycin (ETM-H2O) in surface water presented medium to high risk throughout the entire year, while sulfadiazine (SDZ) and enrofloxacin (EFX) in sediments showed higher accumulation potential. Thus, these five antibiotics were selected as the priority antibiotics for pollution control. In short, this study improves the understanding of antibiotic fates in the urban-rural watershed and provides scientific basis for the authorities to regulate antibiotic pollution.
更多
查看译文
关键词
Antibiotic,Suspended particulate matter (SPM),Urban-rural,Partition,Ecological risk
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要