Metabolism And Disposition In Rats, Dogs, And Humans Of Erdafitinib, An Orally Administered Potent Pan-Fibroblast Growth Factor Receptor (Fgfr) Tyrosine Kinase Inhibitor

XENOBIOTICA(2021)

引用 6|浏览8
暂无评分
摘要
This article describesin vivobiotransformation and disposition of erdafitinib following single oral dose of(3)H-erdafitinib and(14)C-erdafitinib to intact and bile duct-cannulated (BC) rats (4 mg/kg),H-3-erdafitinib to intact dogs (0.25 mg/kg), and(14)C-erdafitinib to humans (12 mg; NCT02692677). Peak plasma concentrations of total radioactivity were achieved rapidly (T-max: animals, 1 h; humans, 2-3 h). Recovery of drug-derived radioactivity was significantly slower in humans (87%, 384 h) versus animals (rats: 91-98%, 48 h; dogs: 81%, 72 h). Faeces was the primary route of elimination in intact rats (95%), dogs (76%), and humans (69%); and bile in BC rats (48%). Renal elimination of radioactivity was relatively low in animals (2-12%) versus humans (19%). Unchanged erdafitinib was major component in human excreta (faeces, 17%; urine, 11%) relative to animals. M6 (O-desmethyl) was the major faecal metabolite in humans (24%) and rats (intact, 46%; BC, 11%), and M2 (O-glucuronide of M6) was the prevalent biliary metabolite in rats (14%). In dogs, besides M6, majority of radioactive dose in faeces was composed of multiple minor metabolites. In humans, unchanged erdafitinib was the major circulating entity. O-demethylation of erdafitinib was the major metabolic pathway in humans and animals.
更多
查看译文
关键词
Disposition, erdafitinib, excretion, FGFR inhibitor, metabolism, pharmacokinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要