Unveiling the stellar origin of the Wolf-Rayet nebula NGC6888 through infrared observations

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2020)

引用 9|浏览8
暂无评分
摘要
We present a comprehensive infrared (IR) study of the iconicWolf-Rayet (WR) wind-blown bubble NGC6888 around WR136. We use Wide-field Infrared Survey Explorer, Spitzer IRAC, and MIPS and Herschel PACS IR images to produce a sharp view of the distribution of dust around WR136. We complement these IR photometric observations with Spitzer IRS spectra in the 5-38-mu m wavelength range. The unprecedented high-resolution IR images allowed us to produce a clean spectral energy distribution, free of contamination from material along the line of sight, to model the properties of the dust in NGC6888. We use the spectral synthesis code CLOUDY to produce a model for NGC6888 that consistently reproduces its optical and IR properties. Our best model requires a double distribution with the inner shell composed only of gas, whilst the outer shell requires a mix of gas and dust. The dust consists of two populations of grain sizes, one with small-sized grains a(small) = [0.002-0.008] mu m and another one with large-sized grains a(big) = [0.05-0.5] mu m. The population of big grains is similar to that reported for other red supergiants stars and dominates the total dust mass, which leads us to suggest that the current mass of NGC6888 is purely due to material ejected from WR 136, with a negligible contribution of the swept up interstellar medium. The total mass of this model is 25.5(-2.8)+4.7 M-circle dot, a dust mass of M-dust = 0.14(-0.01)(+0.03) M circle dot, for a dust-to-gas ratio of 5.6 x 10(-3). Accordingly, we suggest that the initial stellar mass of WR 136 was less than or similar to 50 M-circle dot, consistent with current single stellar evolution models.
更多
查看译文
关键词
stars: evolution,stars: individual: NGC6888,WR136,stars: winds, outflows,stars: Wolf-Rayet,infrared: ISM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要