Thermophilic Pyrrolysyl-Trna Synthetase Mutants For Enhanced Mammalian Genetic Code Expansion

ACS SYNTHETIC BIOLOGY(2020)

引用 10|浏览10
暂无评分
摘要
Genetic code expansion (GCE) is a powerful technique for site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in living cells, which is achieved through evolved aminoacyl-tRNA synthetase mutants. Stability is important for promoting enzyme evolution, and we found that many of the evolved synthetase mutants have reduced thermostabilities. In this study, we characterized two novel pyrrolysyl-tRNA synthetases (PyIRSs) derived from thermophilic archaea: Methanosarcina thermophila (Mt) and Methanosarcina flavescens (Mf). Further study demonstrated that the wild-type PyIRSs and several mutants were orthogonal and active in both Escherichia coli and mammalian cells and could thus be used for GCE. Compared with the commonly used M. barkeri PyIRS, the wild-type thermophilic PyIRSs displayed reduced GCE efficiency; however, some of the mutants, as well as some chimeras, outperformed their mesophilic counterparts in mammalian cell culture at 37 degrees C. Their better performance could at least partially be attributed to the fact that these thermophilic synthetases exhibit a threshold of enhanced stability against destabilizing mutations to accommodate structurally diverse substrate analogues. These were indicated by the higher melting temperatures (by 3-6 degrees C) and the higher expression levels that were typically observed for the MtPyIRS and Mf PyIRS mutants relative to the Mb equivalents. Using histone H3 as an example, we demonstrated that one of the thermophilic synthetase mutants promoted the incorporation of multiple acetyl-lysine residues in mammalian cells. The enzymes developed in this study add to the PyIRS toolbox and provide potentially better scaffolds for PyIRS engineering and evolution, which will be necessary to meet the increasing demands for expanded substrate repertoire with better efficiency and specificity in mammalian systems.
更多
查看译文
关键词
genetic code expansion, noncanonical amino acids, pyrrolysyl-tRNA synthetase, thermostability, lysine acetylation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要