Noncoding de novo mutations contribute to autism spectrum disorder via chromatin interactions

biorxiv(2019)

引用 0|浏览45
暂无评分
摘要
Three-dimensional chromatin structures regulate gene expression across genome. The significance of mutations (DNMs) affecting chromatin interactions in autism spectrum disorder (ASD) remains poorly understood. We generated 931 whole-genome sequences for Korean simplex families to detect DNMs and identified target genes dysregulated by noncoding DNMs via long-range chromatin interactions between regulatory elements. Notably, noncoding DNMs that affect chromatin interactions exhibited transcriptional dysregulation implicated in ASD risks. Correspondingly, target genes were significantly involved in histone modification, prenatal brain development, and pregnancy. Both noncoding and coding DNMs collectively contributed to low IQ in ASD. Indeed, noncoding DNMs resulted in alterations, via chromatin interactions, in target gene expression in primitive neural stem cells derived from human induced pluripotent stem cells from an ASD subject. The emerging neurodevelopmental genes, not previously implicated in ASD, include , , , and Our results were reproducible in 517 probands from MSSNG cohort. This work demonstrates that noncoding DNMs contribute to ASD via chromatin interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要