Simulated Plant Images Improve Maize Leaf Counting Accuracy

biorxiv(2019)

引用 6|浏览19
暂无评分
摘要
Automatically scoring plant traits using a combination of imaging and deep learning holds promise to accelerate data collection, scientific inquiry, and breeding progress. However, applications of this approach are currently held back by the availability of large and suitably annotated training datasets. Early training datasets targeted arabidopsis or tobacco. The morphology of these plants quite different from that of grass species like maize. Two sets of maize training data, one real-world and one synthetic were generated and annotated for late vegetative stage maize plants using leaf count as a model trait. Convolutional neural networks (CNNs) trained on entirely synthetic data provided predictive power for scoring leaf number in real-world images. This power was less than CNNs trained with equal numbers of real-world images, however, in some cases CNNs trained with larger numbers of synthetic images outperformed CNNs trained with smaller numbers of real-world images. When real-world training images were scarce, augmenting real-world training data with synthetic data provided improved prediction accuracy. Quantifying leaf number over time can provide insight into plant growth rates and stress responses, and can help to parameterize crop growth models. The approaches and annotated training data described here may help future efforts to develop accurate leaf counting algorithms for maize.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要