谷歌浏览器插件
订阅小程序
在清言上使用

Local chromatin context dictates the genetic determinants of the heterochromatin spreading reaction

PLOS Genetics(2021)

引用 1|浏览26
暂无评分
摘要
Heterochromatin spreading, the expansion of gene-silencing structures from DNA-encoded nucleation sites, occurs in distinct settings. Spreading re-establishes gene-poor constitutive heterochromatin every cell cycle, but also invades gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context, i.e. euchromatic, heterochromatic, or different nucleator types, influences the determinants of this process remains poorly understood. By screening a nuclear function gene deletion library in fission yeast using a previously established heterochromatin spreading sensor system, we identified regulators that positively or negatively alter the propensity of a nucleation site to spread heterochromatin. We find that different chromatin contexts are dependent on unique sets of genes for the regulation of heterochromatin spreading. Further, we find that spreading in constitutive heterochromatin requires Clr6 histone deacetylase complexes containing the Fkh2 transcription factor, while the Clr3 deacetylase is globally required for silencing. Fkh2 acts by recruiting Clr6 to nucleation-distal chromatin sites. Our results segregate the pathways that control lateral heterochromatin spreading from those that instruct DNA-directed assembly in nucleation. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要