Complex phase masks for OH suppression filters in astronomy: part I: design.

OPTICS EXPRESS(2020)

引用 7|浏览11
暂无评分
摘要
The design of a complex phase mask (CPM) for inscribing multi-notch fiber Bragg grating filters in optical fibers for OH suppression in astronomy is presented. We demonstrate the steps involved in the design of a complex mask with discrete phase steps, following a detailed analysis of fabrication constraints. The phase and amplitude of the complex grating is derived through inverse modelling from the desired aperiodic filter spectrum, following which the phase alone is encoded into the surface relief of a CPM. Compared to a complicated "running-light" Talbot interferometer based inscription setup where the phase of the inscribing beam is controlled by electro- or acousto-optic modulators and synchronized to a moving fiber translation stage, CPM offers the well-known convenience and reproducibility of the standard phase mask inscription technique. We have fabricated a CPM that can suppress 37 sky emission lines between 1508 nm to 1593 nm, with a potential of increasing to 99 channels for suppressing near-infrared (NIR) OH-emission lines generated in the upper atmosphere and improving the performance of ground-based astronomical telescopes. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要