Chrome Extension
WeChat Mini Program
Use on ChatGLM

Evaluation of a Digital Triage Platform in Uganda: A Quality Improvement Initiative to Reduce the Time to Antibiotic Administration.

PLoS ONE(2020)

Cited 8|Views22
No score
Abstract
Background Sepsis is the leading cause of death in children under five in low- and middle-income countries. The rapid identification of the sickest children and timely antibiotic administration may improve outcomes. We developed and implemented a digital triage platform to rapidly identify critically ill children to facilitate timely intravenous antibiotic administration. Objective This quality improvement initiative sought to reduce the time to antibiotic administration at a dedicated children's hospital outpatient department in Mbarara, Uganda. Intervention and study design The digital platform consisted of a mobile application that collects clinical signs, symptoms, and vital signs to prioritize children through a combination of emergency triggers and predictive risk algorithms. A computer-based dashboard enabled the prioritization of children by displaying an overview of all children and their triage categories. We evaluated the impact of the digital triage platform over an 11-week pre-implementation phase and an 11-week post-implementation phase. The time from the end of triage to antibiotic administration was compared to evaluate the quality improvement initiative. Results There was a difference of -11 minutes (95% CI, -16.0 to -6.0; p < 0.001; Mann-WhitneyUtest) in time to antibiotics, from 51 minutes (IQR, 27.0-94.0) pre-implementation to 44 minutes (IQR, 19.0-74.0) post-implementation. Children prioritized as emergency received the greatest time benefit (-34 minutes; 95% CI, -9.0 to -58.0; p < 0.001; Mann-WhitneyUtest). The proportion of children who waited more than an hour until antibiotics decreased by 21.4% (p = 0.007). Conclusion A data-driven patient prioritization and continuous feedback for healthcare workers enabled by a digital triage platform led to expedited antibiotic therapy for critically ill children with sepsis. This platform may have a more significant impact in facilities without existing triage processes and prioritization of treatments, as is commonly encountered in low resource settings.
More
Translated text
Key words
Triage Systems
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined