Comparison between experimental digital image processing and numerical methods for stress analysis in dental implants with different restorative materials

Journal of the Mechanical Behavior of Biomedical Materials(2021)

引用 19|浏览3
暂无评分
摘要
The aim of this study is to evaluate the stresses transferred to peri-implant areas from single implants restored with different restorative materials and subjected to a static vertical load with low eccentricity. A total of 12 crowns were made with four types of materials: carbon fiber-composite, metal-ceramic, metal-composite, and full-metal, all of them cemented over a titanium abutment. Three different ways of approaching the problem have been used independently to verify the robustness of the conclusions. The experimental results of stress distribution around the implant were obtained by two image processing techniques: Digital Photoelasticity and Digital Image Correlation (DIC). The tests have been modelled by 3D Finite Element Method (FEM). The FEM models have also been used to study the sensitivity of the results to slight changes in geometry or loads, so that the robustness of the experimental techniques can be analyzed. In addition, the realistic bone morphology of the mandible has also been modelled by FEM, including the cortical and trabecular bone property distinctions.
更多
查看译文
关键词
Dental implants,Dental prosthesis,Implant-supported prosthesis,Peri-implant,Dental restorative materials,Strain analysis,Digital photoelasticity,Digital image correlation,Finite element method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要