Low Temperature Growth of Crystalline Semiconductors on Nonepitaxial Substrates

ADVANCED MATERIALS INTERFACES(2020)

引用 3|浏览18
暂无评分
摘要
In this work, a low temperature templated liquid phase (LT-TLP) growth process is presented, that enables one to directly grow high optoelectronic quality single crystalline compound semiconductors (InP and InAs) on amorphous dielectrics at temperatures below 400 degrees C. Uniquely, the material quality is optimal when InP is grown at 300 degrees C, a temperature which is low enough to enable back-end-of-line growth on fully fabricated Si complementary metal oxide semiconductor circuits. Using this low-temperature grown InP, a transistor fabrication process is then entirely carried out at 300 degrees C or below, and an indium phosphide nanoribbon field effect transistor with excellent on/off ratios is demonstrated, indicating low defect density in the material. Overall, this approach enables growth of large area (tens of micron) single crystal compound semiconductor at low temperatures, establishing a back-end-of-line (BEOL) compatible process for monolithic 3D device integration.
更多
查看译文
关键词
3D integration,back-end-of-line devices,heterogeneous integration,low temperature growth,single crystal compound semiconductors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要