Pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP) End Capped with Napthalimide or Phthalimide: Novel Small Molecular Acceptors for Organic Solar Cells.

Molecules (Basel, Switzerland)(2020)

引用 5|浏览15
暂无评分
摘要
We introduce two novel solution-processable electron acceptors based on an isomeric core of the much explored diketopyrrolopyrrole (DPP) moiety, namely pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP). The newly designed and synthesized compounds, 6,6'-[(1,4-bis{4-decylphenyl}-2,5-dioxo-1,2,4,5-tetrahydropyrrolo[3,2-b]pyrrole-3,6-diyl)bis(thiophene-5,2-diyl)]bis[2-(2-butyloctyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione] (NAI-IsoDPP-NAI) and 5,5'-[(1,4-bis{4-decylphenyl}-2,5-dioxo-1,2,4,5-tetrahydropyrrolo[3,2-b]pyrrole-3,6-diyl)bis(thiophene-5,2-diyl)]bis[2-(2-butyloctyl)isoindoline-1,3-dione] (PI-IsoDPP-PI) have been synthesized via Suzuki couplings using IsoDPP as a central building block and napthalimide or phthalimide as end-capping groups. The materials both exhibit good solubility in a wide range of organic solvents including chloroform (CF), dichloromethane (DCM), and tetrahydrofuran (THF), and have a high thermal stability. The new materials absorb in the wavelength range of 300-600 nm and both compounds have similar electron affinities, with the electron affinities that are compatible with their use as acceptors in donor-acceptor bulk heterojunction (BHJ) organic solar cells. BHJ devices comprising the NAI-IsoDPP-NAI acceptor with poly(3-n-hexylthiophene) (P3HT) as the donor were found to have a better performance than the PI-IsoDPP-PI containing cells, with the best device having a VOC of 0.92 V, a JSC of 1.7 mAcm-2, a FF of 63%, and a PCE of 0.97%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要