Online Active Model Selection for Pre-trained Classifiers
Abstract:
Given $k$ pre-trained classifiers and a stream of unlabeled data examples, how can we actively decide when to query a label so that we can distinguish the best model from the rest while making a small number of queries? Answering this question has a profound impact on a range of practical scenarios. In this work, we design an online sel...More
Code:
Data:
Full Text
Tags
Comments